
NASA NASA

.
*
*
*
*
*
*
*
*
*
*
*
*
*
*

USL / Davls NASA / PC R8d3

WFXING PAPER SERIES

R e p o r t Number

D€MS .NASA/PC R8d3- 1 9

*
*
*
*
*
*
*
*
*
*
*
*
*
*

* *
* *
* *
.

The USL/DBMS NASA/PC R&D Working Paper Series contains a collection of formal and
informal reports representing results of PC-based research and development activities being
conducted by the Center for Advanced Computer Studies of the University of Southwestern
Louisiana pursuant t o the specifications of National Aeronautics and Space Administration
Contract Number NASW-3846 and NASA Training Grant Number NGT-19-010-900.

For more information, contact:

Wayne D. Dominick

Editor
USL/DBMS NASA/PC R&D Working Paper Series

Center for Advanced Computer Studies
University of Southwestern Louisiana

P. 0. Box 44330
Lafayette, Louisiana 70504

(318) 231-6308

(hASA-CR-184551) CBJ€C!T-OHXEETEC SYSTEM: N89-14991
A h ANNOTATED E I L L I G G R A E H Y F i n a l Report, 1
J u l . 1 4 t 5 - 3 1 Cec. 1S87 (University of
s c u t h wes tern LG u isiana . La f ay E t te, Center Unclas
t c r A d v d n c € d C c r p u t e r S t u d i e s -) 28 p G 3/82 0 1835 89

DBMS.NASA/PC R&D-19 WORKING PAPER SERIES

~~

NASA

0 bject- Or iented Systems:

An Annotated Bibliography

Cherie T. Powell

and

Dennis R. Moreau

The University of Southwestern Louisiana
Center for Advanced Computer Studies

Lafayette, Louisiana

December 10, 1986

NASA

DBMS.NASA/PC R&D-19 - 1 - WORKING PAPER SERIES

I NASA NASA

Object-Oriented Systems: An Annotated Bibliography

This document represents a comprehensive annotated bibliography of journal publications, conference
publications and books related to objectroriented systems. This is an evolving document and will be up-
dated periodically to reflect the current state of research literature in this area.

Abdali, S. Kamal, Guy W. Cherry and Neil Soiffer. ”A Smalltalk System for Algebraic
Manipulation.” OOPSLA’86: Sigplan Notices Special Issue, November 1986, pp.
2 77-28 3.

This paper describes the design of an algebraic computations system named VIEWS which
has been written in Smalltalk. VIEWS has been designed to allow for the manipulation of
a large variety of algebraic objects while still maintaining system cohesion and extensibili-
ty. The facilities developed to accomplish this include: the dynamic creation and manipu-
lation of computational domains, viewing these domains as various categories (such as
groups, rings, or fields), and expressing algorithms generically at the level of categories.
These elements of the VIEWS system design led directly to the introduction of three new
concepts added to Smalltalk: parameterized classes, protocol views, and categories.
Overall, this provides a powerful basis for the design of a computer algebra system.

Agha, Gul A. ”A Message-Passing Paradigm for Object Management.” Database En-
gineering Bulletin, Vol. 8, No. 4, December 1985, pp. 75-82.

This article discusses the architecture of the actor model, which provides support for distri-
buted databases. The author illustrates how all computations in the actor systems can be
structured in terms of transactions. He also mentions Hybrid’s implemented solutions for
consistency, concurrency control, and deadlock.

Agha, Gul A. ”An Overview of Actor Languages.” ACM: Sigplan Notices, October
1986, pp. 68-67.

In this paper, information on the actor languages is presented with an overview of the ac-
tor model, plus a discussion on the advantages of actor languages in the design of large-
scale concurrent architectures. Actors are agents that fulfill their actions when confronted
by incoming communications. A discussion is also made on higher-level actor languages
that use inheritance and delegation for conceptual organization and structuring respective-
ly.

DBMS.NASA/PC R&D-19 - 2 - WORKING PAPER SERIES

NASA NASA

Ahlsen, Matts, Anders Bjornerstedt and Christer Hulten. " OPAL: An Object-Based
System for Application Development." Database Engineering Bulletin, Vol. 8, No.
4, December 1985, pp. 31-40.

This paper presents an outline on OPAL, a combined run time and application develop-
ment system. The authors also discuss the structure of the intended environment for
OPAL, from the architecture to the basic system concepts including the Objecbbased
model. A brief discussion is also presented on the development of an application within
this model.

Anderson, David B. "Experience with Flamingo: A Distributed, Object-Oriented User
Interface System." OOPSLA '86: Sigplan Noticea Special Iaaue, November 1986,
pp. 177-184.

This paper deals with the experience of constructing and using a distributed object-
oriented window manager. The goal of this experiment is to provide a flexible interface to
a distributed, heterogeneous computing system. Through this object-oriented interface,
Flamingo emerges as a kernel window manager which provides a dynamic linkage between
different window management systems and graphic packages.

Atkinson, Robert G. "Hurricane: An Optimieing Compiler for Smalltalk." OOPS-
LA'86: Sigplan Notices Special Iaaue, November 1986, pp. 151-158.

Hurricane is a recent and very efficient compilation system designed for the Smalltalk-
80(TM) language. The unique aspect of this compiler is that i t tries to make use the se-
mantics of the language. This new approach can be handled through the development of a
type declaration and inference mechanism. Details are provided for the implementation of
the compiler.

Ballard, Mark B., David Maier and Allen Wirfs-Brock. "QUICKTALK: A Smalltalk-
80 Dialect for Defining Primitive Methods." OOPSLA'86: Sigplan Notices Special
Issue, November 1986, pp. 140-150.

QUICKTALK is a dialect of Smalltalk-80 which was designed to depict the primitive
Smalltalk methods. QUICKTALK provides better performance over bytecodes by abolish-
ing the interpreter loop on bytecode execution, the removal of redundant class checking,
and a decrease in the number of message sendlreturns via binding some target methods at
compilation. This paper discusses the changes that were made in the Smalltalk-80 system
and compiler.

DBMS.NASA/PC R&D-19 - 3 - WORKING PAPER SERIES

NASA NASA

Bhaskar, K. S., et al. “Virtual Instruments: Object Oriented Program Syathesis.”
OOPSLA’86: Sigplan Notices Special Issue, November 1986, pp. 303-314.

Virtual Instruments is a support environment - implemented in Smalltalk-80 - which p r e
vides electronic test and measurement (T & M) applications. The main users are test en-
gineers who specialize in the computer literate domain. In order t o achieve software
development without writing code, a programming paradigm composed of a bottom-up vir-
tual instrument synthesis uses human interface models from the applications domain.

Black, Andrew, et al. “Object Structure in the Emerald System.” OOPSLA’86: Sigplan
Notices Special Issue, November 1986, pp. 78-86.

A new object-based language for the construction of distributed applications is presented.
Called Emerald, its goal is to simplify distributed programming through language support
while also providing acceptable performance and flexibility, both locally and in the distri-
buted environment. Emerald is fundamentally designed around objects which can encapsu-
late the concepts of process, procedure, data and location. In Emerald, objects are fully
mobile and can move from node to node within the network, even during invocation. This
paper emphasizes the various aspects of Emerald objects and the language’s use of abstract
types.

Bobrow, Daniel G., et al. ”CommonLoops: Merging Lisp and Object-Oriented Pra-
gramming.” OOPSLA’86: Sigplan Notices Special Issue, November 1986, pp. 17-
29.

The authors describe the Common Lisp Object-Oriented Programming System, Common-
Loops, which merges objectoriented programming smoothly into the procedureoriented
design of Lisp. By integrating Lisp data types with object classes, CommonLoops makes i t
easy to incrementally move a program between the procedure and object-oriented styles.
One of the most important features of CommonLoops is the use of meta-objects which
make practical both efficient implementation of and experimentation with new ideas for
object-oriented programming. This system shares many similarities with several of the
other important object-oriented languages and CommonLoops’ small kernel is powerful
enough to implement these languages.

Bonar, Jeffrey., Robert Cunningham and Jamie Schultz. ”An Object-Oriented Archi-
tecture for Intelligent Tutoring Systems.” OOPSLA’86: Sigplan Notices Special
I s ~ u e , November 1986, pp. 269-276.

DBMS.NASA/PC R&D-19 - 4 - WORKING PAPER SERIES

, NASA NASA

This paper discusses an object-oriented architecture designed for a tutoring system which
handles objects portraying knowledge elements that are taught by the tutors. These ele-
ments are known as bites which inherit both knowledge organization and tutoring com-
ponents. The tutoring coiiiponent provides the necessary features which handle tutoring
tasks such as diagnosis, student modeling, and task selection. The authors demonstrate this
approach through the implementation of several tutors.

Borgida, Alexander. "Exceptions in Object-Oriented Languages." ACM: Sigplan notice^,
October 1986, pp. 107-119.

This paper describes how inflexible the object-oriented constraints are in the schema of
conceptual model language. An example of this problem is to allow the existence of ob-
jects which violates constraints and to allow contradictory class definitions. The problems
that exist with persistent exceptional objects can be resolved through a form of exception
handling. Also featured are tlie advantages in building an exception handling language
within an object-oriented paradigm.

Brown, Gretchen P., et al. "Program Visualization: Graphical Support for Software
Development." Computer , August 1985, pp. 27-35.

Program Visualization is ;I graphical display which helps programmers form a precise men-
tal image of a program's atructure and function. The goal of the Program Visualization
(PV) designers is to extend application-specific graphical support techniques and develop
new graphics tools that together can be used at each stage of the software life cycle. After
this process is completed, then tlie next challenge is to include the separate phases of the
software development process into a unified conceptual framework.

Bruce, Kim B. and Peter Wegner. "An Algebraic Model of Subtypes in Objectr
Oriented Languages." ACM: Sigplan Notices , October 1986, pp. 163-172.

This paper illustrates how the definitions of type and subtype fail to correspond to their
natural usage in programming languages. In an algebraic model, inheritance is expanded
into a generalized version ivliich means that the subtype relation is structured with
property-preserving mappings. The algebraic model is also constructed from a second ord-
er (polymorphic) lambda calculus which contains subtype polymorphism which is related to
inheritance.

Bruno, Giorgio and Alessandro Balsamo. "Petri Net-Based Object-Oriented Model-
ling of Distributed Systems." OOPSLA '86: Sigplan Notices Special Issue, November
1886, pp. 284-292.

DBMS.NASA/PC R&D-19 - 5 - WORKING PAPER SERIES

NASA NASA

This paper proposes the use of an object-oriented approach as a suitable means for building
models of distributed systems. An example given is the case of Computer Integrated
Manufacturing (CIM) Systems using ADA as the implementation language. A system using
this approach is built up in three steps: control and synchronization aspects for each object
class are treated using Petri nets, data are entered specifying the internal states of the ob-
jects and their passed messages, and the connections between the objects are introduced by
a data flow diagram between classes. The approach offers advantages such as: support of
conceptual models, integrated graphical representation, and building executable
specifications. The flexibility of the approach and the possibility of using a knowledge-
based user interface promote rapid prototyping and reusability.

Cargill, T. A. "Pi: A Case Study in Object-Oriented Programming." OOPSLA'86: Sig-
plan Notices Special Issue, November 1986, pp. 350-360.

The subject of this paper is object-oriented programming's effect on the design, evolution
and capability of a debugger called Pi. The author describes the development of P i in
C++ and why object-oriented programming worked well in that language. Object-oriented
programming was initially chosen as a means of experimenting with a browser-type graphi-
cal user interface to the debugger. After the application of objectoriented techniques,
several extra benefits such as symbol table structure, multi-process debugging and target
environmental independence were also achieved.

Caudill, Patrick J. and Allen Wirfs-Brock. "A Third Generation Smalltalk-8O(TM)
Implementation." OOPSLA'86: Sigplan Notices Special Issue, November 1986, pp.
119-130.

This paper concentrates on the design decisions which led to this new Smalltalk-80(TM)
implementation. While Smalltalk-80(Th4) retains features of its previous images, i t also
provides for a large object space and an interpreter. The interpreter has generation based
garbage collection, but no object table. The performance results indicate that the
Smalltalk-80(TM) implementation can handle a large number of active objects.

Cox, Brad and Bill Hunt. "Objects, Icons, and Software-IC's." BYTE: The Small Sys-
tems Journal, August 1985, pp. 161-176.

DBMS.NASA/PC R&D-19 - 6 - WORKING PAPER SERIES

NASA NASA

The paper discusses how object-oriented programming can make iconic user interface
affordable. Iconic interface uses pictures instead of text and numbers as information
guides, which increases the design cost. Encapsulation and inheritance are the two features
which build the iconic interface through direct program integration of generic components
and through the new application-specific components which inherit work from generic com-
ponents in the library. The authors also illustrate a program called Workbench, which
demonstrates how object-oriented programming and its ability to reuse code in generic
Software-IC (reusable classes) libraries can build iconic applications at a reduced rate.

Croft, Bruce W. "Task Management for an Intelligent Interface." Database Engineet-
ing Bulletin, Vol. 8, No. 4, December 1985, pp. 8-13.

An intelligent interface assists users in the execution of their tasks. The paper discusses an
intelligent interface that uses an object management system to manage object and task in-
stantiations and their associations between one another. This object management system
looks like a data model that emphasizes the modeling of operations.

Cunningham, Ward and Kent Beck. "A Diagram for Object -Oriented Programs."
OOPSLA'86: Sigplan Notices Special Issue, November 1988, pp. 381-387.

This paper introduces a system of notation for diagramming the message sending dialogue
that takes place between objects that are involved in an object-oriented computation. In
this system, objects are represented by boxes (labeled by the object's class) and messages
are represented by directed arcs from the sending object t o the receiving object. Other de-
tails of the notation system are also provided. The Smalltalk-80 system is used and its
code has been extended to automatically collect information and construct diagrams utiliz-
ing an enhanced debugger utility. The authors have used these diagrams successfully as a
teaching aid for students learning object-oriented programming.

Dasgupta, Partha. "A Probe-Based Monitoring Scheme for an Object-Oriented, Distri-
buted Operating System." OOPSLA'86: Sigplan Notices Special Issue, November
1986, pp. 57-88.

This paper investigates the use of probes for monitoring system status in a distributed sys-
tem network. Probes are a form of emergency status enquiries tha t can be effectively used
for system monitoring, reconfiguration, fault tolerance and interactive debugging support.
A prototype operating/programming environment called Clouds, which is implemented on
VU1750 computers, is selected for probe usage. Clouds is a distributed, object-oriented
operating system which is wholly structured on the object concept. The author presents a
short summary of the design criteria, goals and architecture of the Clouds system. He also
describes how the probe system fits into the existing Clouds design.

DBMS.NASA/PC R&D-19 - 7 - WORKING PAPER SERIES

NASA NASA

Decouchant, Dominique. "Design of a Distributed Object Manager for the Smalltalk-
80 System." OOPSLA'86: Sigplan Notices Special Issue, November 1986, pp. 444-
452.

This presentation illustrates a distributed object manager which allows various Smalltalk-
80 systems to share objects over a local-area network. The following are principles which
support this object manager: location transparency and uniformed object naming, unique
object representation and use of symbolic links for remote access, object migration and dis-
tributed garbage collection. An implemented version of this object manager is currently
being integrated on a two nodes configuration.

De Jong, Peter. "Compilation into Actors." ACM: Sigplan Notices, October 1986, pp.
68-77.

This paper is about the ACT compiler which optimizes the translation of the Scripter pro-
gramming language into actors. Details are given on the transformation of Scripter's syn-
chronous function calls into asynchronous message sends which are acceptable to actors.
Information is also provided on the conservation of time and space through the minimizing
of the number of message sends and the number of customer and customer scripts generat-
ed.

Derrett, Nigel, William Kent and Peter Lyngbaek. "Some Aspects of Operations in an
Object-Oriented Database." Database Engineering Bulletin, Vol. 8, No. 4, De-
cember 1985, pp. 66-74.

This paper discusses some aspects of database operations; specifically those for the
Hewlett-Packard Iris DBMS prototype. The Iris data model is designed to be object-
oriented by including data abstraction and the entity concept as central features. These
features give the Iris object-oriented data model a clear advantage over a conventional
data model (such as the Relational Model), by allowing database operations to be directly
specified and stored in the DBMS. The authors go on to describe the specific operational
features chosen for Iris and its prototype development.

Duff, Charles B. "Designing An Efficient Language." BYTE: The Small Systems Jour-
nal, August 1985, pp. 211-224.

The author discusses the design of Smalltalk and suggest ways to improve the language.
Some of these improvements exist in garbage collecting, late versus early binding, and
models for the interpreter. He also compares the advantages of a token-threaded inter-
preter to Smalltalk's byte-code interpreter in regards to a new language, called Actor,
which supports early binding and other optimizations.

D%MS.NASA/PC R&D-19 - 8 - WORKING PAPER SERIES

NASA NASA

Ewing, Juanita J. "An Object-Oriented Operating System Interface." OOPSLA '86:
Sigplan Notices Special Issue, November 1988, pp. 48-66.

An object-oriented interface from a Smalltalk-80 programming environment to a W E - l i k e
operating system is presented and discussed. This interface imposes an object-oriented
paradigm on operating system facilities. The goals for interface implementation include:
access to low level operating facilities; use of higher order abstractions based on system
calls, for operating system functions; cooperation between Smalltalk programs and conven-
tionally compiled programs; creation of a window oriented operating system command in-
terface. The author gives several examples of cooperating Smalltalk and operating system
processes.

Fukunaga, Koichi and Shin-ichi Hirose. "An Experience with a Prolog-Based Object-
Oriented Language." OOPSLA '86: Sigplan Notices Special Issue, November 1986,
pp. 224-231.

The object of this paper is to apply the SPOOL language to the annotated system
PROMPTER. The SPOOL language is based on object-oriented and logic programming.
The result of this combination was the formalization of domain knowledge into declarative
data types which were reusable in different contexts. Further study is needed in the
linguistic area to explore the full potential of this combination.

Gaguen, Joseph A. and Josi Mesegure. "Extensions and Foundations of Object-
Oriented Programming." ACM: Sigplan Notices, October 1986, pp. 163-162.

This paper is about a new language, FOOPS (Foundations of Objector iented Program-
ming System), which provides several new features, rigorous logical semantics, and unifies
object-oriented programming with functional programming. FOOPS has three distinct
techniques which are discussed: subsorts for multiple-inheritance, comparison between
abstract data type and "object" modules, and a built-in data type written in a sub-
language. Some of the new features that are mentioned are: user-definable abstract data
type, flexible typing, semantics, and the mixing of coding with specifications.

Garrett, L. Nancy and Karen E. Smith. "Building a Timeline Editor from Prefab
Parts: The Architecture of an Object-Oriented Application." OOPSLA'86: Sig-
plan Notices Special Iaaue, November 1986, pp. 202-213.

Interval, a tool in the Intermedia system, allows inventors t o explore new ideas and to
build linked timelines. Interval is written in the object-oriented version of C. The purpose
of this paper is to discuss the object-oriented architecture and the appropriate building
blocks which makeup the main framework of the Interval system.

DBMS.NASA/PC R&D-19 - 9 - WORKING PAPER SERIES

NASA NASA

Hindler, James. “Enhancement for Multiple-Inheritance.” ACM: Sigplan Notices, Oc-
tober 1986, pp. 98-106.

This presentation is about the improper usage of mixins within the multiple-inheritance
class. Mixins is defined as the mixing of sets of operations in classes with usually larger
classes. The paper presents us with a solution to this problem through an ”enhancement”
technique which has advantages over the present mixin method.

Ingalls, Daniel H. H. ”A Simple Technique for Handling Multiple Polymorphism.”
OOPSLA’86: Sigplan Notices Special Issue, November 1986, pp. 347-349.

When a problem such as multiple polymorphic expressions exit in object-oriented program-
ming, a breakdown occurs which causes the coding structure to disembark. A technique
designed to solve this problem contains all of the objecboriented programming features
which can confront any form of polymorphism. Although this technique is written in
Smalltalk-80 syntax, other object-oriented languages can also be used.

Ishikawa, Yutaka and Mario Tokoro. “A Concurrent Object-Oriented Knowledge
Representation Language Orient84/K: Its Features and Implementations.”
OOPSLA’86: Sigplan Noticea Special Issue, November 1986, pp. 232-241.

This paper introduces an overview on the components of an object and its capability for
concurrent execution in the Orient84/K language. A new schema is proposed and
described for an adept execution of concurrent objects. A new interpreter, called
ZOOM/VM, is designed to handle this new schema for Orient84/K.

Ishikawa, Yutaka and Mario Tokoro. ” Concurrent Programming in Orient84/K: An
Object-Oriented Knowledge Representation Language.” ACM: Sigplan Notices,
October 1986, pp. 39-48.

The object of this paper is to illustrate the design philosophy and concurrent constructs of
Orient84/K programs. A description on each construct is given, such as asynchronous mes-
sage passing, synchronization, priority control, access control, and mutual exclusion. An
example program for mutual exclusion and access control demonstrates the capabilities of
concurrent programming in Orient84/K.

Jacky, Jonathon and Ira Kalet. ”An Object-Oriented Approach to a Large Scientific
Application.” OOPSLA’86: Sigplan Notices Special Issue, November 1986, pp.
3 68-37 6.

DBMS.NASA/PC R&D-19 - 1 0 - WORKING PAPER SERIES

NASA NASA

The authors describe their efforts to use object-oriented design in a large scientific applica-
tion concerning the simulation of radiation therapy treatments for cancer. They describe
how they instituted a practical clinical system with implemented objects, inheritance, mes-
sage passing, windows, and concurrency, using Pascal. The system is implemented on a
VAX minicomputer with graphical workstation capability, under a VMS operating system.
The authors demonstrate the clear advantage of their object-oriented approach over the
traditional scientific language (FORTRAN) array model.

Jacob, Robert J. K. "A State Transition Diagram Language for Visual Program-
ming." Computer, August 1985, pp. 51-59.

The author discusses visual programming for abstract objects such as time sequence,
hierarchy, conditional statements, and framed-based knowledge. A visual programming en-
vironment with a graphical language is presented to study the potential of visual program-
ming. The author acknowledges that only a few graphical representations of abstract ob-
jects have been developed in the visual programming paradigm. Then he stresses the need
for a more general graphical representation of programming objects.

Jacobson, Ivar. "Language Support for Changeable Large Real Time Systems."
OOPSLA'86: Sigplan Notices Special Issue, November 1980, pp. 377-384.

A set of concepts for the development and modeling of large telecommunication systems is
presented. The original proposed study was to attempt to unify extensive experience in
telecommunication systems design with emerging computer technology. Recent concepts
growing out of this have resulted in an example object-oriented language called FDL that
models large real time systems.

Johnson, Ralph E. "Type-Checking Smalltalk." OOPSLA '86: Sigplan Not ices Special l a -
sue, November 1980, pp. 315-321.

The factor necessary to increase the speed of Smalltalk is called code optimization. The
prerequisite required to build an optimized compiler for Smalltalk is a type-system. How-
ever, existing type-systems are not sufficient because of incorrect program typing, run-time
type errors and not enough information for optimization. A new type-check system for
Smalltalk which is fitting for code optimization is introduced.

Jones, Michael B. and Richard F. Rashid. "Mach and Matchmaker: Kernel and
Language Support for Object-Oriented Distributed Systems." OOPSLA '86: Sig-
plan Not ices Special Issue, November 1986, pp. 07-77.

DBMS.NASA/PC R&D-19 - 11- WORKING PAPER SERIES

NASA NASA

This paper describes Matchmaker, an interface specification language and compiler which
provides programming language support for distributed, object-oriented programming. Its
associated operating system is called Mach, a multiprocessor operating system kernel which
provides interprocess communication based on capability. Their usage together provides
for a heterogeneous, distributed, object-oriented programming environment. The authors
discuss the development and operational performance of the Mach/Matchmaker environ-
ment and compare i t to other related systems. Possible future directions are also exam-
ined.

Kaehler, Ted. "Virtual Memory on a Narrow Machine for an Object-Oriented
Language." OOPSLA'86: Sigplan Notices Special Isaue, November 1986, pp. 87-
106.

The author introduces a virtual memory called LOOM (Large Object-Oriented Program-
ming) that is implemented in software that supports Smalltalk-80 on the Xerox Dorado
computer. LOOM can provide secondary memory storage on narrow, 16b i t wide word
computers. All storage is viewed as Smalltalk objects that contain fields. LOOM swaps
objects between primary and secondary memory, and addresses each type of memory with
a different sized object pointer. The author further discusses the design and implementa-
tion of LOOM as part of an integrated virtual memory and storage management system.

Kaehler, Ted and Dave Patterson. "A Small Taste of Smalltalk." BYTE: The Small
Systems Journal, August 1985, pp. 145-159.

Through samples of various programs, the authors show how object-oriented programming
can make a programmer's job simpler. A non-object-oriented program is presented as a
learning tool for the Smalltalk language. Detailed information is also presented on the
proper usage of the Smalltalk user interface. Finally, an example object-oriented program,
implemented in Smalltalk, is written to demonstrate "The Animal Game".

Kahn, Kenneth, et al. " Objects in Concurrent Logic Programming Languages."
OOPSLA'86: Sigplan N o t i c e u Special Iusue, November 1986, pp. 242-257.

Concurrent Prolog provides computational support for objectroriented programming.
These support units are: incomplete messages, unification, direct broadcasting, and con-
currency. Although Concurrent Prolog has an excellent support system, there are some
doubts about Concurrent Prolog's support for expressing the abstractions of object-oriented
programming. A preprocessor, known as Vulcan, can remedy this situation by exploring
new variants of object-oriented programming which exists in this framework.

DBMS.NASA/PC R&D-19 - 12- WORKING PAPER SERIES

NASA NASA

Kahn, Kenneth, et al. "Objects in Concurrent Logic Programming Languages." ACM:
Sigplan Notices, October 1986, pp. 29-38.

Concurrent Prolog provides computational support for object-oriented programming.
These support units are: incomplete messages, unification, direct broadcasting, and con-
currency. Although Concurrent Prolog has an excellent support system, there are some
doubts about Concurrent Prolog's support for expressing the abstractions of object-oriented
programming. A preprocessor, known as Vulcan, can remedy this situation by exploring
new variants of object-oriented programming which exists in this framework.

Khoshafian, Setrag N. and George P. Copeland. "Object Indentity." OOPSLA'86: Sig-
plan Notices Special Issue, November 1986, pp. 406-416.

Identity is an element of an object that separates objects from other objects. The spec-
trum between weak and strong support of identity is examined. Plus, disagreements occur
on why a strong identity should exist in the beginning of languages for general purpose
programming and database systems. The authors also define a data model which describes
complex objects and incorporates identity. A comparison between various implementation
schemes for identity is presented. Debates on the purpose of a surrogate-based implementa-
tion schema, which supports a strong notion of identity, are also mentioned.

LaLonde, Wilf R., Dave A. Thomas and John R. Pugh. "An Exemplar Based
Smalltalk." OOPSLA'86: Sigplan Notices Special Issue, November 1986, pp. 322-
330.

This paper discusses how exemplar-based systems are powerful in comparison to class based
systems. Exemplar-based systems can distinguish between class hierarchies and instance
hierarchies. The authors present the transformation of a class based Smalltalk to an
exemplar-based Smalltalk. The authors also discuss the difference between or-inheritance
and and-inheritance and they present an implementation of both.

Lang, Kevin J. and Barak A. Pearlmutter. "OAKLISP: An Object-Oriented Scheme
with First Class Types." OOPSLA'86: Sigplan Notices Special I s m e , November
1986, pp. 30-37.

DB.MS.NASA/PC R&D-19 - 13- WORKING PAPER SERIES

NASA NASA

The authors introduce the reader to OAKLISP, a message based, multiple inheritance di-
alect of LISP. OAKLISP is based on a conceptual object-oriented language called Scheme.
Using the Scheme philosophy, OAKLISP is designed to be simpler and more expressive
than LISP by elevating functions to the level of first class objects which can be meaning-
fully manipulated by user code. Programs are written using LISP syntax, and traditional
LISP data types coexist with a Smalltalk style class hierarchy. This provides OAKLISP
with better integration of its object-oriented and functional sides than the other new
object-oriented languages such as FLAVORS, Object LISP or COMMON LOOPS.

Lewis, David M., et al. "SWAMP: A Fast Processor for Smalltalk-80." OOPSLA'86:
Sigplan Notices Special Iaaue, November 1986, pp. 131-139.

SWAMP (Smalltalk Without All That Much Pipelining) is a processor designed to handle
the rapid execution of Smalltalk-80 at a rate of 1.9M bytecode per second performance.
This machine achieves this rapid execution through its circuitry, such as tag checking.
The processor applies a general principle which locates special problems and handles them
promptly.

Lieberman, Henry. "Using Prototypical Objects to Implement Shared Behavior in
Object-Oriented Systems." OOPSLA'86: Sigplan Noticea Special Iaaue, November
1988, pp. 214-223.

This paper compares and contrasts the mechanisms of sets and prototypes for sharing
behavior between objects in object-oriented programming languages. The author first cov-
ers the basic concepts of object representation with respect to artificial intelligence applica
tions. He supports the prototype approach in AI as i t corresponds more closely to the way
people seem to acquire knowledge from concrete situations, whereas the concept of a set is
more abstract and mathematical. The prototype approach holds some advantages for
representing default knowledge, and incrementally and dynamically modifying concepts.
The mechanism of delegation is used to implement this approach in object-oriented
languages.

London, Ralph L. and Robert A. Duisberg. "Animating Programs Using Smalltalk."
Computer, August 1985, pp. 61-71.

Animating programs provides information on how a program works through technical and
psychological interfaces. Smalltalk is used in these animated programs because of its many
facilities and human interface design. The authors discuss the many examples of anima-
tion programming through interactive compilers, application accelerators, distributed ob-
ject managers, and dynamic programming language environments such as Prolog.

DBMS.NASA/PC R&D-19 - 1 4 - WORKING PAPER SERIES

NASA NASA

Maier, David, et al. "Development of an Object Oriented DBMS." OOPSLA'86: Sigplan
Notices Special Issue, November 1980, pp. 472-482.

This paper presents the development of the Gemstone objectoriented database server.
The goals and requirements for the system are illustrated through the following subjects:
an extensible data model featuring semantics, no artificial bounds on the size of database
objects, database features and an interactive development environment. Smalltalk is used
to answer some of these requirements, since Gemstone supports a model of objects which
are like Smalltalk's.

Maier, David, A. Otis and A. Purdy. "Objecf-Oriented Database Development at Ser-
vi0 Logic." Database Engineering Bulletin, Vol. 8, No. 4, December 1985, pp. 58-
05.

Gemstone is an objectoriented database system, which supports objects and messages
similar to those in the Smalltalk-80 language. The authors discuss the requirements, goals,
and the technical challenges that faced them during the development of this system.

McAllester, David And Ramin Zabih. "Boolean Classes." OOPSLA '86: Sigplan Notices
Special Issue, November 1980, pp. 417-423.

Through the extension of classes any Boolean combination can exist as a class. Boolean
classes allow a class of objects which governs a certain method to be properly named. Like
predicates, a class can be declared true or false for any object. Although Boolean classes
make classes more like predicates, they also preserve the inheritance hierarchy which exists
at compile time.

McLeod, Dennis and Surjatini Widjojo. "Object Management and Sharing in Auto-
nomous, Distributed Data/Knowledge Bases." Database Engineering Bulletin, Vol.
8, No. 4, December 1985, pp. 83-89.

A research project is implemented to devise and experimentally test concepts, techniques
and mechanisms to support a distributed object management system. The system, known
as the Distributed Personal Knowledge Manager (DPKM), would allow non-computer ex-
pert users to define, manipulate, and evolve collections of information. DPKM includes a
set of primitive manipulation and retrieval operations, and a mechanism to allow con-
trolled object sharing amoung multiple data/knowledge bases. A review of the develop-
ment of a prototype implementation of this system is also provided.

DBMS.NASA/PC R&D-19 - 15 - WORKING PAPER SERIES

NASA NASA

Melamed, Benjamin and Robert J. T. Morris. ”Visual Stimulation: The Performance
Analysis Workstation.” Computer, August 1985, pp. 87-94.

This article presents an overview of work in the field of visual simulation and modeling.
The visual method employs extensive graphics for drawing a model on a CRT screen and
then observing its behavior through animation and dynamically evolving statistics. Some
important advantages of this method include: increasing user efficiency by manipulating
complex information pictorially instead of reading text, allowing the user visual access to
the internal operations of the process, and letting the user experiment with his model by
easily altering its structure and parameters and then observing changes at each step of the
modified simulation. As part of their work on this subject, the authors have developed a
new visual simulation package prototype called the Performance Analysis Workstation. It
is written in C and runs in a UNIX-based environment. The paper describes the package
development and experiences to date. ‘

Meyer, Bertrand. “Genericity Versus Inheritance.” OOPSLA ’86: Sigplan Notices Special
Issue, November 1986, pp. 391-405.

This report compares and contrasts Genericity and Inheritance, which are two alternative
methods for ensuring better extendibility, reusability and compatibility of software com-
ponents. The author discusses a statically typed language, which was formed from the
combined features of Genericity and Inheritance. He then presents the programming
language Eiffel, which contains multiple inheritance and a limited form of genericity under
full static typing.

Meyrowite, Norman. ”Intermedia: The Architecture and Construction of an Object-
Oriented Hypermedia System and Applications Framework.” OOPSLA ’86: Sig-
plan Not ices Special Issue, November 1986, pp. 186-201.

This paper describes the Intermedia system which is a large scale, object-oriented hyper-
media system that provides document linkages. The author presents the educational and
technological background within the system. Information is also given on the object-
oriented technology that is used in the architecture and construction of the Intermedia sys-
tem.

Miller, Michael S., et al. ”The Application Accelerator Illustration System.” OOPS-
LA’86: Sigplan Notices Special Issue, November 1988, pp. 294-302.

DBMS.NASA/PC R&D-19 - 18- WORKING PAPER SERIES

NASA NASA

An example of a CAD environment that supports the development of integrated circuits is
the Application Accelerator Illustration System. Implemented in Smalltalk-80(TM), this
system contains a hardware language, timing analyzer, functional simulator, waveform
tracer, and data path place and route facility. The goal of the project is to integrate these
aspects so that users can move freely with each feature of the system.

Mittal, Sanjay., Daniel G . Bobrow and Kenneth M. Kahn. "Virtual Copies: At the
Boundary Between Classes and Instances." OOPSLA '86: Sigplan Noticeu Special
Iuuue, November 1986, pp. 159-168.

Object-oriented programming systems provide a good foundation for building knowledge
bases by using networks of interconnected objects in their representations. In support of
this, the' authors describe a mechanism that provides a way to use a network as a p r o t e
type by making virtual copies of it. The use of virtual copies saves time and space in
building knowledge bases for design, or for representing contexts in a problem solving sys-
tem. The virtual copy mechanism extends the functions of objectoriented programming to
deal with networks of objects rather than single instances, and allows multiple copies of
networks of instances to be constructed incrementally.

Moon, David A. " Object Oriented Programming With Flavors." OOPSLA'86: Sigplan
Noticed Special Iuaue, November 1986, pp. 1-8.

This paper describes an updated version of an object oriented programming system call
Flavors. It was originally developed to build a window system and other system program-
ming in a LISP program development environment. Flavors is a distributed approach to
object oriented programming designed to encourage program modularity, easier develop-
ment of large complex programs, and high run time efficiency. The author primarily
focuses on the overall history, goals and major characteristics of the Flavors system.

Moriconi, Mark and Dwight F. Hare. "Visualizing Program Designs Through
PegaSys." Computer, August 1985, pp. 72-85.

The PegaSys is an experimental system that explains program designs and encourages
graphical images as formal, machine-processable documentation. The authors give back-
ground information on PegaSys and use excerpts to illustrate the style of interaction as
well as the three main PegaSys capabilities.

Nierstrasz, 0. M. "Hybrid: A Unified Object-Oriented System." Database Engineering
Bulletin, Vol. 8, No. 4, December 1985, pp. 49-57.

DBMS .NASA/P C R&D- 19 - 17 - WORKING PAPER SERIES

NASA NASA

The author discusses how an abstract data type language, Hybrid, tries to unify several
object-oriented concepts into a single, coherent system. An overview of the object model
and a number of the Hybrid language features are also mentioned. Information is also
presented on object management.

Nguyen, V. and B. Hailpern. “ A Generalized Object Model.” ACM: Sigplan Notices,
October 1986, pp. 78-87.

The authors present a new generalized object model that allows multi-dimensional inheri-
tance. In this model, objects are organized into networks which eliminates the use of the
large superclass and class of all classes. Objects, in this model, act like communicating
processes which makes i t possible to present simple yet formal semantics for objects and
inheritance.

Nygaard, Kristen. Basic Concepts in Object Oriented Programming.” ACM: Sigplan
Notices, October 1986, pp. 128-132.

This lecture is about the first object-oriented language, SZMULA. The author presents us
with the basic foundation and characterization of object-oriented programming with
respect t o process and structure. In addition, the author views the prospects of object-
oriented programming as a system which includes objects measured by their properties and
by the changing of objects’ states.

Olthoff, Walter G. “Augmentation of Objectoriented Programming by Concepts of
Abstract Data Type Theory: The Modpascal Experience.” OOPSLA ’86: Sigplan
Notice8 Special Issue, November 1988, pp. 429-443.

The subject of this report is the object-oriented language Modpascal, which is a part of
the Integrated Software Development and Verification (ISDV) Project. The author shows
how algebraic specification, enrichments, parameterized specification or signature morphism
can be integrated into the ModPascal language. An investigation is also presented on how
formal specification or algebraic verification can loose power and applications without the
support of the above abstract data type (ADT) theoretical concepts.

Ossher, Harold L. ”A Mechanism for Specifying the Structure of Large, Layered,
Object-Oriented Programs.” ACM: SigpIan Notices, October 1986, pp. 143-162.

DBMS.NASA/PC R&D-19 - 18- WORKING PAPER SERIES

NASA NASA

This paper is about the clear concepts of the grid mechanism which is designed to enforce
the structure of large, layered, object-oriented programs. The concepts include explicit
identifications on program layers and specific access restrictions on program structures.
Some techniques are also mentioned which make the global structure of large programs dis-
tinct.

Pascoe, Geoffrey A. ”Elements of Object-Oriented Programming.” BYTE: The Small
Syatema Journal, August 1985, pp. 139-144.

This paper first discusses comparative differences between procedure-oriented program-
ming and object-oriented programming. In order for a language to be object-oriented, i t
must contain the following elements: information hiding, data abstraction, dynamic bind-
ing and inheritance. This article discusses these requirements and presents the advantages
and disadvantages in using objectoriented programming languages.

Pascoe, Geoffrey A. ”Encapsulators: A New Software Paradigm in Smalltalk-80.”
OOPSLA’86: Sigplan N o t i c e a Special Issue, November 1986, pp. 341-346.

Encapsulators represents a new paradigm which builds structured and modular code in
object-oriented systems. Encapsulators have applications to problems whose solutions can
be cas t in terms of performing automatic actions or enforcing access control when an ob-
ject is sent a message. A discussion is made on how the new software paradigm can be
properly integrated into the based Smalltalk-80 image.

Piersol, Kurt W. “Object Oriented Spreadsheets: The Analytic Spreadsheet Pack-
age.” OOPSLA’86: Sigplan Notices Special Iasue, November 1986, pp. 385-390.

A spreadsheet that has been developed by Xerox for implementation in Smalltalk-80 is dis-
cussed. Called ASP, Analytic Spreadsheet Analysis, i t has the capability to hold any type
of Smalltalk-80 object in its spreadsheet cells giving i t exceptional power, expandability
and flexibility. The keys to ASP’S capabilities lie in the options provided by Smalltalk
such as the ability to treat programs as data, a readily available compiler, standardized
protocols, and polymorphic variables.

Pountain, Dick. ” Object-Oriented FORTH.” BYTE: Tbe Small Systems Journal, August
1985, pp. 227-233.

DBMS.NASA/PC R&D-19 - 1 9 - WORKING PAPER SERIES

NASA NASA

This article describes some FORTH extensions which, when compiled into a FORTH-83
standard system, form a new mechanism for defining abstract data systems which fits the
description of real world objects. This new mechanism, implemented in FORTH, enables
programmers to write object-oriented programs which are similar t o Smalltalk-80 prc-
grams, but do not have the same power as Smalltalk.

Raeder, Georg. "A Survey of Current Graphical Programming Techniques." Comput-
er, August 1985, pp. 11-25.

This article emphasizes how graphical images can improve current programming tech-
niques. It discusses the interaction of the user with pictures and how this transfers infor-
mation to the mind more rapidly than reading text. The most appropriate applications of
pictures and images in programming are presented and some recent graphical-programming
systems are reviewed.

Reiss, Steven P. "A Object-Oriented Framework for Graphical Programming." ACM:
Sigplan Notices, October 1986, pp. 49-57.

GARDEN graphical programming system is a programming environment developed at
Brown University. In this object-oriented framework, objects represent both programs and
data. This paper describes how a practical environment based on graphical programming
is achieved through display packages for objects and through a uniform exception mechan-
ism that can handle the variations of graphical representations.

Samples, A. Dain, David Ungar and Paul Hilfinger. "SOAR: Smalltalk Without
Bytecodes." OOPSLA'86: Sigplan Notices Special Iatme, November 1986, pp. 106-
118.

This paper focuses on software techniques to support Smalltalk on conventional architec-
tures. Smalltalk is implemented on an instruction level simulator for a reduced instruction
set computer (RISC). The simulator is called SOAR (Smalltalk On A RISC) and is
designed to improve the implementation and performance of Smalltalk-80 on a convention-
al computer. The primary change involves abandoning the virtual machine interpreter for
Smalltalk-80, which has proved to be inherently slow in implementation, and instead com-
piling Smalltalk directly to SOAR machine code. Several changes in object and record
manipulation had to be made for this new Smalltalk approach to work effectively.

Sandberg, David. "An Alternative to Subclassing." OOPSLA '86: Sigplan Notices Special
Issue, November 1986, pp. 424-428.

DBMS.NASA/PC R&D-19 - 20 - WORKING PAPER SERIES

NASA NASA

Smalltalk-80’s expressive power is achieved through its class arrangements in a hierarchy.
Although inheritance is the main feature of this hierarchy, description promotes the alter-
native organization of classes. The new option, called descriptive classes, not only uses
compile-time type checking, but also the attributes of Smalltalk’s hierarchy.

Schaffert, Craig, et al. ”An Introduction to Trellis/Owl.” OOPSLA ’86: Sigplan N o t i c e 3
S p e c i a l Isaue, November 1986, pp. 9-16.

This paper gives an overview of the design and development of a complete object-based
programming environment called Trellis, and its implemented language, Trellis/Owl. This
language provides for type (class) hierarchy with multiple inheritance which allows for
shared operations. Trellis/Owl combines features that facilitate the design, implementa-
tion, and evolution of large, complex computer programs. The authors discuss the basic
elements of the language and objects, and show how these are specified and implemented
using concepts such as types, operations, and components.

Schmucker, Kurt J. ”MACAPP: An Application Framework.” BYTE: The S m a l l Sys-
tems Journal , August 1985, pp. 189-193.

An application framework, called MacApp, is examined in this paper. The application
framework defines the basic structures that implement the Llacintosh user-interface stan-
dard without any specific commands. From this framework, a designer can customize his
application through the design of object, object performance. and the installation of ob-
jects into the framework. The author presents the basic structure of the MacApp, sugges-
tions on the development of an application, and how the MacApp can reduce a Macintosh
program development time.

Schmucker, Kurt J. ” Object-Oriented Languages for the Macintosh.” BYTE: The
Small Systems Journal , August 1985, pp. 177-185.

This paper gives an overview of the object-oriented languages which are used on the Apple
Macintosh. A table is presented on the characteristics of each language, such as provisions
for class methods and accessibility t o the MacApp class library. Also provided is informa-
tion on the mechanism of each programming language on the Macintosh.

Shu, Nan C. ”FORMAL: A Forms-Oriented, Visual-Directed Application Develop
ment System.” Computer , August 1985, pp. 38-49.

DBMS.NASA/PC R&D-19 - 21 - WORKING PAPER SERIES I

NASA NASA

This article presents a forms-oriented programming language which simplifies the process of
representing data objects and program structures. FORMAL is a practical forms-oriented
language, which has a number of visual expressions that can compute a wide range of com-
mon data processing tasks. The author tries to prove the feasibility of FORMAL through
a comparison between it and another two dimensional language.

Skarra, Andrea H. and Stanley B. Zdonik. "The Management of Changing Types in
an Object-Oriented Database." OOPSLA '86: Sigplan Notices Special Issue, No-
vember 1986, pp. 483-495.

This paper evaluates type evolution in a object-oriented database environment. Changing
a type is not any easy task since types are defined as objects which are persistent and
shared in a database environment. The extent of the change may exist in the object of the
type and the programs that use objects of the type. In order for a type designer to create
compatible versions of the type, a method is provided which supports timestamping and er-
ror handling mechanisms.

Smith, Reid G., Rick Dinite and Paul Barth. "Impluse-86: A Substrate for Objecf-
Oriented Interface Design." OOPSLA '86: Sigplan Notices Special Issue, November
1986, pp. 167-176.

Impulse-86 is a foundation - implemented in the Strobe language - which provides the
building blocks necessary to construct a variety of domain specific commands that support
knowledge based systems. The five building blocks are: Editor, Editor Window, Property
Display, Menu, and Operations. These building blocks can handle a range of interaction
activities. The Impulse-86 substrate provides those developers - who are not familiar with
interactive graphics - the ability to design a special interface for their system.

Snyder, Alan. "CommonObjects: An Overview." ACM: Sigplan Notices, October 1986,
pp. 19-28.

CommonObjects is an object-oriented extension of Common Lisp which, in the style of
Smalltalk and Flavors, supports object-oriented programming. In comparison to other
languages, CommonObjects provides greater support to encapsulation with respect t o in-
heritance. An efficient implementation strategy for conventional architectures is briefly
described, plus an analysis on nonstandard language features which are necessary for port-
able implementations.

DBMS.NASA/PC R&D-19 - 22 - WORKING PAPER SERIES

NASA NASA

Snyder, Alan. "Encapsulation and Inheritance in Object-Oriented Programming
Languages." OOPSLA'86: Sigplan Not ice8 Special Iasre, November 1986, pp. 38-
45.

The author presents an overview of two important concepts in object-oriented program-
ming. The first one is encapsulation which is a technique to maximize modularity and data
abstraction capability. The other concept is inheritance which allows subclasses access to
all instance variables defined by an ancestor class. Unfortunately, in most object-oriented
languages, the introduction of inheritance severely compromises the benefits of encapsula-
tion. The paper discusses the encapsulation/inheritance relationship and develops require-
ments for full support of encapsulation with inheritance in object-oriented program sys-
tems.

Strom, Rob. "A Comparison of the ObjectOriented and Process Paradigms." ACM:
Sigplan Notices, October 1986, pp. 88-97.

This paper compares the object-oriented and process paradigms with an emphasis on their
development of large systems. Definitional differences are presented on particular instances
of the paradigms. The mechanisms of each paradigm needed to support dynamic code
binding, code reuse, and access control are presented and contrasted.

Stroustrup, Bjarme. "An Overveiw of C++." ACM: Sigpfan Notices, October 1986, pp.
7-18.

C++ is an added version of the C programming language. C++ was designed to incor-
porate new features into the C language which can handle type checking, data abstrac-
tions, operation overloading, and object-oriented programming.

Tesler, Larry. "Programming Experiences." BYTE: The Srnafl Syatema Jorrnal, August
1985, pp. 195-206.

The author compares the experience of different object-oriented programming designers.
He interviewed several people who designed their programs in Objective-C, C++, Object
Pascal, and the Smalltalk language. He collected each programmer's thoughts about
object-oriented programming and its effect on their projects. These interviews prove how
diversifiable these object-oriented programming languages can be for various situations.

Tsichriteis, D. " Object Species." h t o b a s e Engineering Bulletin, Vol. 8, No. 4, December
1985, pp. 2-5.

DBMS.NASA/PC R&D-19 - 23 - WORKING PAPER SERIES

NASA NASA

This paper discusses an environment for end-user-oriented objects, which can be used in an
Office Information System and in particular a Message System. The author studies the
specification and implementation of complex objects which have an external behavior that
can be visualized by users through analogies from the animal world.

Vegdahl, Steven R. "Moving Structures Between Smalltalk Images." OOPSLA '86: Sig-
plan Notices Special Isaue, November 1986, pp. 466-471.

Moving data structures between Smalltalk images is the subject of this paper. Existing
Smalltalk images do not have the necessary facilities to handle circular structures properly.
A collection of Smalltalk methods, which has advantages over the standard image, was im-
plemented to handle circular structures. The issues that arose during the design, imple-
mentation, and usage of these methods were discussed in this paper.

Wegner, Peter. "Classification in Object-Oriented Systems." ACM: Sigplan Notices,
October 1986, pp. 173-182.

This paper reviews the classification mechanisms which categorize object-oriented systems.
A brief discussion is presented on the contrast between communication and state transition
paradigms. There is also a focus on how type inheritance transforms from simple descrip-
tive categories t o tree-structured hierarchies. Technical details are also included on the
structures of algebraic, sezond order, polymorphic, and lambda calculus in regards to
values that are computed with a calculus of classes weaker than calculi.

Weiser, Stephen P. "An ObjectOriented Protocol for Managing Data." Database En-
gineering Bulletin, Vol. 8, No. 4, December 1985, pp. 41-48.

The author presents an object-oriented programming environment, named Oz, which was
designed to easily handle certain aspects of office information systems. Also mentioned are
the limitations of Oz and the additional facilities which enhance Oz's capability of manag-
ing office data.

Wiebe, Douglas. "A Distributed Repository for Immutable Persistent Objects."
OOPSLA'86: Sigplan Notices Special Issue, November 1986, pp. 453-465.

DBMS.NASA/PC R&D-19 - 24 - WORKING PAPER SERIES

NASA NASA

Jasmine is an object-oriented system for programming-in-the-large which uses "system
model objects" to influence software development. These objects are lifelong and un-
changeable since the system models act like historical records. Information is also present-
ed on the JStore, which is a storage system that provides robust, transitional, and write-
once storage. The paper further describes the designs for the serialization, location and re-
plication of objects that are used in JStore.

Woo, C. C. and F. H. Lochovsky. "An Object-Based Approach to Modelling Office
Work." DataCaae Engineering Bulletin, Vol. 8, No. 4, December 1985, pp. 14-22.

This paper discusses an object system designed to support oflice work. The authors exam-
ine the necessary facilities that must exist in "objects" in order t o support different types
of oflice work. They also demonstrate this new model through an office example.

Yokote, Yasuhiko and Mario Tokoro. "The Design and Implementation of Con-
currentSmalltalk." OOPSLA'86: Sigplan Notiees Special Issue, November 1986,
pp. 331-340.

ConcurrentSmalltalk is a programming language/system which is outlined in terms of com-
munication, synchronization, atomic objects, and concurrent constructs. The design and
implementation of ConcurrentSmalltalk is also discussed through details on bytecodes,
primitives, object representation and garbage collection.

Yoneeawa, Akinori, Jean-Pierre Briot and Etsuya Shibayama. "Object-Oriented Con-
current Programming in ABCL/l." OOPSLA'86: Sigplan Notices Special Issue,
November 1986, pp. 258-268.

An object-oriented computation model, which incorporates three types of message passing,
is designed to demonstrate a variety of concurrent systems. Al3CL/1 is the programming
language that supports this computation model and through its use, an implementation of
distributed problem solving is presented. An example of the reply destination mechanism
and future type message passing is given by a distributed "same fringe" algorithm which
compares the fringes of two trees (LISP list).

Zdonik, Stanley B. "Maintaining Consistency in a Database with Changing Types."
ACM: Sigplan Notices, October 1986, pp. 120-127.

DBMS.NASA/PC R&D-19 - 25 - WORKING PAPER SERIES

NASA NASA

Upholding conformity between a set of persistent objects and a set of changeable type
definitions is a difficult problem that exists in objecboriented database systems. The au-
thor demonstrates the solution through a set of error handlers connected with versions of a
type and a version control mechanism.

Zdonik, Stanley B. Object Management Systems for Design Environments." Databaae
Engineering Bulletin, Vol. 8, No. 4, December 1985, pp. 23-30.

This paper also discusses an object system designed to support office work.

DBMS.NASA/PC R&D-19 - 2 6 - WORKING PAPER SERIES

~~
~ ~~~~

~

2. Government Accession /p3d-g9 & 1. Report No.

//!I - ,3>
4. Title and Subtitle

' P
USL/NGT-19-010-900: OBJECT-ORIENTED SYSTEMS: AN ANNOTATED
BIBLIOGRAPHY

7. AuthorW

CHERIE T. POWELL AND DENNIS R. MOREAU

9. Performing Organization Name and Address

University of Southwestern Louisiana
The Center for Advanced Computer Studies
P.O. Box 44330

3. Recipient's Catalog No.

5. Report Date P47 7L
December 10, 19860y~5~,.~.+2

6. Performrng Organization Code

8. Performing Organization Report No.

10. Work Unit No.

11. Contract or Grant No. 1 NGT-19-010-900
Lafayette, LA 70504-4330

12. Sponsoring Agency Name and Address

13. Type of Repon and Period Covered

FINAL; 07/01/85 - 12/31/87
14. Sponsoring Agency Code

15. Supplementary Notes

17. Key Words (Suggested by Author(s1)

Object-Oriented Systems Bibliogra-
phy, P C - B a s e d Research and Develop-
ment

16. Abstract

18. Distribution Statement

This Working Paper Series entry represents a comprehensive annotated bibliography of journal publi-
cations, conference publications, and books related to objectoriented systems. This is an evolving
document and will be updated periodically to reflect the current state of research literature in this
area.

19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. NO. of Pages

Unclassified . Unclassified 26

This report represents one of the 72 attachment reports to the University of Southwestern Louisiana's
Final Report on NASA Grant NGT-19-010-900. Accordingly, appropriate care should be taken in
using this report out of the context of the full Final Report.

22. Rice'

